首页 > 资讯 >

全球生成式AI应用全景图:AI应用进入大爆发时代

2023-09-07 17:44:29 来源:华金证券股份有限公司

模型、算力、生态推动AI 应用进入大爆发时代:


(资料图片仅供参考)

1)算法及模型的快速进步:2017 年Transformer 模型及2022 年ChatGPT 的发布标志着生成式AI 在文本领域的重大飞跃,并在多项能力上超越了人类基准,未来随着更强大的语言大模型(如GPT-5),以及多模态生态和视觉大模型的技术持续突破,将推动AI 应用的持续进化。

2)算力基础设施将更快、更便宜:虽然短期内大模型训练需求的激增推高了算力成本,但随着英伟达GPU 性能的持续升级,以及微软、亚马逊、谷歌和Facebook 等巨头正在加大对AI 算力云服务的资本开支,并积极布局自研AI芯片,未来AI 算力将更快、更便宜,以更好的支撑应用层的快速发展。

3)AI 生态的逐渐成熟:AI 组件层(AI Stack)的完善和产业分工细化,为AI应用在模型训练、数据整合、应用开发、应用部署等环节提供全生命周期的支撑。

全球科技股复盘:算力基础设施层公司率先受益于本轮AI 产业浪潮,应用层公司同样有所演绎,从兑现节奏上晚于基础设施层。在基础设施层中,英伟达是AI“掘金买铲”逻辑的核心受益者,其次为微软、Google、AWS、Oracle 等头部云服务厂商和大模型厂商。在应用层中,美股年初至今涨幅靠前的AI 应用公司有: Palantir(136%) 、Duolingo(109%) 、Shopify(92%) 、Palo AltoNetworks(74%) 、Salesforce(67%) 、adobe (67%)、ServiceNow (52%) 。相较于AI 基础设施厂商已经能够从模型训练所产生的巨大需求,订单和业绩也得到了持续验证,B 端应用还处于早期,大多数AI 应用厂商还尚未进入到商业化阶段,从兑现时间来看预计要晚于基础设施层2-3 个季度。

全球生成式AI 项目及投融资现状:

1)AI 项目数量激增:GitHub 上AI 开源项目截止8 月底数量达到了91 万,相较于去年全年的增幅达到264%。根据Replit 的数据,23 年二季度AI 项目环比增速达80%,相较于去年同期同比增长了34 倍;2)OpenAI 在大模型上依然具备统治级地位:95%以上的应用项目均是基于OpenAI 的模型来构建,同时开源项目数量也开始大幅增长;3)2023 年是生成式AI 投融资创纪录的年份:根据CB Insights 的数据,截至2023 年第二季度,生成式AI 的投融资相较于去年全年的25 亿美元,增长了4.6倍;

4)生成式AI 应用层融资金融仅占三成:目前约七成资金投向了包括大模型开发在内AI 基础设施层。而从应用层的融资中,AI 数字代理获得融资最多,其次  为文本、图像、代码及音频的生成工具。

生成式AI 应用按应用领域可以分为工具型应用、通用软件、行业软件、智能硬件四大类,从产品形态上将沿着AIGC(内容生成)、Copilot(智能助手)、Insight(知识洞察)、Agent(数字代理)四个重要的方向演进。

1)工具型应用:包括聊天机器人、搜索引擎、文本工具、AI 作画以及代码工具等,主要集中在C 端,产品的同质化程度较高,对于大多数文本、图像、视频、代码、3D 模型等AIGC 工具,模型/算法的能力决定了产品的受欢迎程度,对底层模型特别是GPT-4 存在高度依赖。目前行业进入第一轮洗牌期,竞争优势的构建来自于差异化的产品定位以及持续训练更强大的底层模型和算法。

2)通用软件:包括办公软件、企业服务、IT 运维、软件开发、网络安全、数据智能等领域,各领域头部厂商均已出现标杆产品,最常见的产品形态主要是AI智能助理(Coplilot),代表有Office 365 Copilot、Salesforce Einstein GPT 及Adobe Firefly。目前各个赛道竞争格局变化不大,各个赛道的龙头厂商依然率先受益于生成式AI 所创造的新的产品功能,未来的竞争关键在于AI 与场景/工作流的深度融合,目前通用软件头部厂商预计将在四季度进入商业化落地的关键阶段;

3)行业软件:涉及金融、医疗、教育、工业、游戏、法律等多个行业,生成式AI 在游戏、法律、教育、电商等C 端场景有较多的结合,而在医疗、金融、工业等B 端场景下生成式AI 产品的成熟度仍然偏低。AI 助手(Copilot)同样得到了广泛应用,而未来在金融、医疗、工业等领域,最具前景的应用来自于数据分析和知识洞察(Insight)工具。同时,目前各行业头部厂商也在开始自建垂类大模型,包括彭博社的金融大模型Bloomberg,以及Meta 蛋白质大模型ESMFold,当前垂类大模型在其专业领域的性能普遍超过通用大模型。

4)智能硬件:包括智能汽车、机器人、智能终端等,目前生产式AI 与智能硬件的结合主要分为两个方面:一是语音助手,应用场景包括智能座舱、智能音箱、家用机器人等各类智能终端,相较于过去的语音交互模式,大模型和生成式AI 技术提升了感知和生成能力,进而带来了用户体验的提升,但是总体而言产品门槛相对较低,另一类则为数字代理AI Agent,主要应用包括自动驾驶、智能机器人等,具备更加广阔的应用空间。目前AI Agent 在 感知与决策能力上仍存在瓶颈,未来应用空间打开的关键在计算机视觉、具身智能等底层技术的突破。

生成式AI 产品目前的商业模式主要包括功能订阅、按量付费、产品销售等,其中C 端应用以功能订阅和按量付费为主,商业化已经趋于成熟,而B 端应用则主要为功能订阅、解决方案和产品销售,即将进入全面商业化阶段。目前第一批生成式AI 应用包括Jasper AI、Notion AI、MidJourney 等均已经成功实现商业化。其中Office 365 Copilot 的定价为每个用户30 美元/月。相较于Office 主线产品15-30 美元/月的定价,最高提升了2 倍以上。Salesforce 的生成式AI模块服务GPT 和销售GPT 分别单用户每月付费为50 美元。此外,Palantir、Palo Alto Networks 的AI 产品已经在实际场景中得到应用且已经带来了明显的收入贡献,四季度AI 应用将正式进入商业化落地阶段。

投资逻辑:生成式AI 相关标的涉及模型、算法、应用、算力四大类型厂商,重点看好具备明确商业化前景,能够基于行业纵深,场景卡位,数据资源的来构建竞争壁垒的应用厂商公司。同时,看好AI Infra 中应用上游工具链头部厂商,  能够通过产品横向一体化来不断扩大自身的竞争优势。相关标的:1)办公软件:

金山办公、福昕软件;2)企业服务:泛微网络、致远互联;3)教育:科大讯飞;4)创意工具:万兴科技;5)金融:同花顺、恒生电子;6)网络安全:安恒信息、深信服、奇安信;7)法律:金桥信息;8)工具链:星环科技;9)智能汽车:中科创达、德赛西威。与此同时,我们看好大模型训练及推理所带来的的算力需求的持续增加,看好芯片、服务器、云服务及算力租赁厂商,相关标的:云赛智联、寒武纪,海光信息、浪潮信息、紫光股份、中科曙光、优刻得、青云科技。

风险提示:技术发展风险、贸易摩擦加剧风险、数据安全风险、道德和伦理风险。

关键词

最近更新